Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 452: 131273, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36996540

RESUMO

To achieve economical and efficient decolorization, two novel flocculants, weakly hydrophobic comb-like chitosan-graft-poly (N, N-Dimethylacrylamide) (CSPD) and strongly hydrophobic chain-like chitosan-graft-L-Cyclohexylglycine (CSLC) were synthesized in this study. To assess the effectiveness and application of CSPD and CSLC, the impacts of factors, including flocculant dosages, initial pH, initial dye concentrations, co-existing inorganic ions and turbidities, on the decolorization performance were explored. The results suggested that the optimum decolorizing efficiencies of the five anionic dyes ranged from 83.17% to 99.40%. Moreover, for accurately controlling flocculation performance, the responses to flocculant molecular structures and hydrophobicity in flocculation using CSPD and CSLC were studied. The Comb-like structure gives CSPD a wider dosage range for effective decolorization and better efficiencies with large molecule dyes under weak alkaline conditions. The strong hydrophobicity makes CSLC more effective in decolorization and more suitable for removing small molecule dyes under weak alkaline conditions. Meanwhile, the responses of removal efficiency and floc size to flocculant hydrophobicity are more sensitive. Mechanism studies revealed that charge neutralization, hydrogen bonding and hydrophobic association worked together in the decolorization of CSPD and CSLC. This study has provided meaningful guidance for developing flocculants in the treatment of diverse printing and dyeing wastewater.

2.
Chemosphere ; 319: 138016, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36731670

RESUMO

Excessive phosphorus in water causes environmental security problems like eutrophication. Advanced two-dimensional material MXene has attracted raising attention in aquatic adsorption, while lack of selectivity and difficult recovery limit its application in phosphate removal. In this study, Ti3C2-MXene embedded zirconium-crosslinked SA (MX-ZrSA) beads were synthesized and their phosphate adsorption performance under different conditions was assessed. Investigations using SEM/EDS, XRD, BET, TGA and contact angle meter reveal that the addition of Ti3C2-MXene enhanced the thermal stability, mechanical strength, hydrophilicity, and formed loose network-like mesoporous inner structure with large surface area. The theoretical maximum adsorption capacity was 492.55 mg P/g and was well fitted by Freundlich and optimized Langmuir models. The Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analysis showed that chemisorption was involved, and the formation of Zr-O-P and Ti-O-P complexes accounted for high selectivity and affinity to phosphate. The adsorption experiments in real waters and lab-scale continuous flow Anaerobic-Anoxic-Oxic reactor further indicated the application potential of MX-ZrSA beads. Our study will provide insight into MXene and SA aerogel synergistic adsorption of aquatic contaminants and help with the removal and recovery of finite phosphorus resource.


Assuntos
Fosfatos , Poluentes Químicos da Água , Fosfatos/química , Água/química , Zircônio/química , Alginatos/química , Titânio/análise , Fósforo , Adsorção , Espectroscopia de Infravermelho com Transformada de Fourier , Cinética , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio
3.
J Hazard Mater ; 446: 130733, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36630877

RESUMO

The activity and selectivity of the cathode towards electrosynthesis of H2O2 are critical for electro-Fenton process. Herein, nickel-foam modified with N, O co-doped graphite nanosheets (NO-GNSs/Ni-F) was developed as a cathode for highly efficient and selective electrosynthesis of H2O2. Expectedly, the accumulation of H2O2 at pH= 3 reached 494.2 mg L-1 h-1, with the selectivity toward H2O2 generation reaching 93.0%. The synergistic effect of different oxygen-containing functional groups and N species on the performance and selectivity of H2O2 electrosynthesis was investigated by density functional theory calculations, and the combination of epoxy and graphitic N (EP + N) was identified as the most favorable configuration with the lowest theoretical overpotential for H2O2 generation. Moreover, NO-GNSs/Ni-F was applied in the electro-Fenton process for p-nitrophenol degradation, resulting in 100% removal within 15 min with the kinetic rate constant of 0.446 min-1 and 97.6% mineralization within 6 h. The efficient removal was mainly attributed to the generation of bulk ·OH. Furthermore, NO-GNSs/Ni-F exhibited excellent stability. This work provides a workable option for the enhancement of H2O2 accumulation and the efficient degradation of pollutants in electro-Fenton system.

4.
Chemosphere ; 302: 134846, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35526683

RESUMO

In remote areas, low-pressure ultrafiltration membrane (LPM) systems can be applied in decentralized water supplies for the treatment of groundwater containing Fe2+, Mn2+, and NH4+. However, improving the performance of the LPM systems, such as the stable flux and removal capacity, presents a challenge. In this study, a novel opposite-flow low-pressure ultrafiltration membrane (O-LPM) system was applied, and its performance was evaluated. Experimental results showed that after 46 days of operation, the steady flux of the O-LPM systems were 1.87-fold and 1.74-fold higher than that of the conventional D-LPM systems under Mn2+ concentration of 0.3 mg L-1 and 1.5 mg L-1, respectively. With a mixed pollutant system containing Fe2+ (0.5 mg L-1), Mn2+ (0.3 mg L-1), and NH4+ (1.0 mg L-1), the O-LPM-ripening period for Mn2+ removal was shortened from 16 days to 8 days, and the NH4+ removal efficiency was increased from 61.46% to 80.97%. The bio-cake layer in the O-LPM systems was thinner and had a higher uniformity than in the D-LPM systems, resulting in a larger stable flux range. The relative abundance of functional bacteria (MnOB, IOB, and NOB) was generally higher in O-LPM systems than in the D-LPM systems. Overall, these results are of high relevance for groundwater treatment in remote areas, providing guidance for the widespread application of the O-LPM system in decentralized water supplies.


Assuntos
Água Subterrânea , Purificação da Água , Bactérias , Ultrafiltração , Purificação da Água/métodos , Abastecimento de Água
5.
Front Genet ; 12: 552454, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33584823

RESUMO

Inorganic phosphate (Pi) is often lacking in natural and agro-climatic environments, which impedes the growth of economically important woody species. Plants have developed strategies to cope with low Pi (LP) availability. MicroRNAs (miRNAs) play important roles in responses to abiotic stresses, including nutrition stress, by regulating target gene expression. However, the miRNA-mediated regulation of these adaptive responses and their underlying coordinating signals are still poorly understood in forestry trees such as Betula luminifera. Transcriptomic libraries, small RNA (sRNA) libraries, and a mixed degradome cDNA library of B. luminifera roots and shoots treated under LP and normal conditions (CK) were constructed and sequenced using next-generation deep sequencing. A comprehensive B. luminifera transcriptome derived from its roots and shoots was constructed, and a total of 76,899 unigenes were generated. Analysis of the transcriptome identified 8,095 and 5,584 differentially expressed genes in roots and shoots, respectively, under LP conditions. sRNA sequencing analyses indicated that 66 and 60 miRNAs were differentially expressed in roots and shoots, respectively, under LP conditions. A total of 109 and 112 miRNA-target pairs were further validated in the roots and shoots, respectively, using degradome sequencing. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of differential miRNA targets indicated that the "ascorbate and aldarate metabolism" pathway responded to LP, suggesting miRNA-target pairs might participating in the removing of reactive oxidative species under LP stress. Moreover, a putative network of miRNA-target interactions involved in responses to LP stress in B. luminifera is proposed. Taken together, these findings provide useful information to decipher miRNA functions and establish a framework for exploring P signaling networks regulated by miRNAs in B. luminifera and other woody plants. It may provide new insights into the genetic engineering of high use efficiency of Pi in forestry trees.

6.
Environ Sci Pollut Res Int ; 26(16): 16641-16651, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30989604

RESUMO

In this paper, the application of ultrafiltration (UF) technology to treat cadmium (Cd) pollution in surface waters is investigated. The effect of the UF membrane molecular weight cut-off (MWCO), Cd ion (Cd2+) concentration, solution pH and ionic strength on the removal, and mass balance of Cd were explored. In addition, the effect of the solution pH on UF membrane fouling was analyzed. The results indicated that UF membranes with a low MWCO resulted in an improved Cd removal rate. In addition, as the Cd2+ concentration in feedwater increased, the Cd removal rate decreased, while the Cd concentration in the permeate increased. Since the solution pH and ionic strength had a notable impact on the Cd removal rate, a high pH value and low ionic strength led to a higher removal rate of Cd. Under optimal Cd removal conditions, UF reduced the influent Cd concentration from 1.0 to 0.019 mg/L. For membrane fouling, increasing the solution pH led to more serious membrane fouling. This phenomenon was the result of Cd2+ reacting with OH- and forming a Cd (OH)2 precipitate. The precipitate and humic acid formed compact cakes on the membrane surface and blocked membrane pores. These results provided adequate evidence for the higher removal of Cd with increasing solution pH. In addition, SEM images under different pH conditions were in agreement with the conclusion mentioned above, which provided further support for the effect of the solution pH on Cd removal and membrane fouling.


Assuntos
Incrustação Biológica , Cádmio/análise , Membranas Artificiais , Ultrafiltração/métodos , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Substâncias Húmicas/análise , Concentração de Íons de Hidrogênio , Modelos Teóricos , Peso Molecular , Concentração Osmolar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...